main.py
config.json
training.py
utils.py
# AI机器人开发代码示例
import tensorflow as tf
from transformers import GPT2LMHeadModel, GPT2Tokenizer
class AIRobot:
def __init__(self, model_name="gpt2"):
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
self.model = GPT2LMHeadModel.from_pretrained(model_name)
def generate_response(self, input_text, max_length=100):
inputs = self.tokenizer.encode(input_text, return_tensors='pt')
outputs = self.model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
temperature=0.7
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def train(self, dataset, epochs=3):
# 训练模型的代码
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
for epoch in range(epochs):
print(f"Epoch {epoch+1}/{epochs}")
for batch in dataset:
# 训练步骤
pass
print("训练完成!")
# 创建机器人实例
robot = AIRobot()
# 测试机器人
response = robot.generate_response("你好,我是开发者")
print(response)
机器人预览
运行中
AI助手 v2.0
基于GPT-2的智能对话机器人
85%
准确率
2.3M
参数
EN/CN
语言
模型配置